A novel histone H4 mutant defective in nuclear division and mitotic chromosome transmission.
نویسندگان
چکیده
The histone proteins are essential for the assembly and function of th e eukaryotic chromosome. Here we report the first isolation of a temperature-sensitive lethal histone H4 mutant defective in mitotic chromosome transmission Saccharomyces cerevisiae. The mutant requires two amino acid substitutions in histone H4: a lethal Thr-to-Ile change at position 82, which lies within one of the DNA-binding surfaces of the protein, and a substitution of Ala to Val at position 89 that is an intragenic suppressor. Genetic and biochemical evidence shows that the mutant histone H4 is temperature sensitive for function but not for synthesis, deposition, or stability. The chromatin structure of 2 micrometer circle minichromosomes is temperature sensitive in vivo, consistent with a defect in H4-DNA interactions. The mutant also has defects in transcription, displaying weak Spt- phenotypes. At the restrictive temperature, mutant cells arrest in the cell cycle at nuclear division, with a large bud, a single nucleus with 2C DNA content, and a short bipolar spindle. At semipermissive temperatures, the frequency of chromosome loss is elevated 60-fold in the mutant while DNA recombination frequencies are unaffected. High-copy CSE4, encoding an H3 variant related to the mammalian CENP-A kinetochore antigen, was found to suppress the temperature sensitivity of the mutant without suppressing the Spt- transcription defect. These genetic, biochemical, and phenotypic results indicate that this novel histone H4 mutant defines one or more chromatin-dependent steps in chromosome segregation.
منابع مشابه
Histone H4 and the maintenance of genome integrity.
The normal progression of Saccharomyces cerevisiae through nuclear division requires the function of the amino-terminal domain of histone H4. Mutations that delete the domain, or alter 4 conserved lysine residues within the domain, cause a marked delay during the G2+M phases of the cell cycle. Site-directed mutagenesis of single and multiple lysine residues failed to map this phenotype to any p...
متن کاملHistone H3 and H4 gene deletions in Saccharomyces cerevisiae
The genome of haploid Saccharomyces cerevisiae contains two nonallelic sets of histone H3 and H4 genes. Strains with deletions of each of these loci were constructed by gene replacement techniques. Mutants containing deletions of either gene set were viable, however meiotic segregants lacking both histone H3 and H4 gene loci were inviable. In haploid cells no phenotypic expression of the histon...
متن کاملDNA topoisomerase II sites in the histone H4 gene during the highly synchronous cell cycle of Physarum polycephalum.
The nearly perfect synchrony of nuclear division in a plasmodium of Physarum polycephalum provides a powerful system to analyze topoisomerase II cleavage sites in the course of the cell cycle. The histone H4 locus, whose schedule of replication and transcription is precisely known, was chosen for this analysis. Drug-induced topoisomerase II sites are clustered downstream of the histone H4 gene ...
متن کاملAltered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae.
Thirteen of 14 temperature-sensitive mutants deficient in successive steps of mitotic chromosome transmission (cdc2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 and 20) from spindle pole body separation to a late stage of nuclear division exhibited a dramatic increase in the frequency of chromosome loss and/or mitotic recombination when they were grown at their maximum permissive temperatures. The inc...
متن کاملBAF53/Arp4 homolog Alp5 in fission yeast is required for histone H4 acetylation, kinetochore-spindle attachment, and gene silencing at centromere.
Nuclear actin-related proteins play vital roles in transcriptional regulation; however, their biological roles remain elusive. Here, we characterize Alp5, fission yeast homolog of Arp4/BAF53. The temperature-sensitive mutant alp5-1134 contains a single amino acid substitution in the conserved C-terminal domain (S402N) and displays mitotic phenotypes, including chromosome condensation and misseg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 16 3 شماره
صفحات -
تاریخ انتشار 1996